首页> 外文OA文献 >Impact Models for Architecture-Based Self-Adaptive Systems
【2h】

Impact Models for Architecture-Based Self-Adaptive Systems

机译:基于体系结构的自适应系统的影响模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-adaptive systems have the ability to adapt their behavior to dynamic operation conditions. In reaction to changes in the environment, these systems determine the appropriate corrective actions based in part on information about which action will have the best impact on the system. Existing models used to describe the impact of adaptations are either unable to capture the underlying uncertainty and variability of such dynamic environments, or are not compositional and described at a level of abstraction too low to scale in terms of specification effort required for non-trivial systems. In this paper, we address these shortcomings by describing an approach to the specification of impact models based on architectural system descriptions, which at the same time allows us to represent both variability and uncertainty in the outcome of adaptations, hence improving the selection of the best corrective action. The core of our approach is an impact model language equipped with a formal semantics defined in terms of Discrete Time Markov Chains. To validate our approach, we show how employing our language can improve the accuracy of predictions used for decisionmaking in the Rainbow framework for architecture-based self-adaptation.
机译:自适应系统具有使其行为适应动态运行条件的能力。作为对环境变化的反应,这些系统部分基于有关哪种操作将对系统产生最佳影响的信息来确定适当的纠正措施。用于描述适应影响的现有模型要么无法捕获此类动态环境的潜在不确定性和可变性,要么无法构成,并且在抽象级别上的描述水平太低,无法满足非常规系统所需的规范工作。在本文中,我们通过描述一种基于体系结构系统描述的影响模型规范方法来解决这些缺点,该方法同时允许我们在适应结果中表示可变性和不确定性,从而改进了最佳选择纠正措施。我们方法的核心是一种影响模型语言,该模型配备了根据离散时间马尔可夫链定义的形式语义。为了验证我们的方法,我们展示了使用我们的语言如何提高Rainbow框架中基于架构的自适应的决策预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号